
Using Stable Communities for Maximizing
Modularity ?

S. Srinivasan and S. Bhowmick

Department of Computer Science, University of Nebraska at Omaha

Abstract. Modularity maximization is an important problem in net-
work analysis and is used for detecting communities in networks. How-
ever, like many other NP-hard combinatorial optimization problems, the
results–the value of the modularity as well as the community membership–
are affected by the order in which the vertices in the network are pro-
cessed. We define stable communities as groups of vertices that always
remain in the same community, independent of the vertex perturbations
to the input graph and develop an algorithm that can identify pockets of
such stable communities. We show through empirical results that iden-
tifying the stable communities as a preprocessing step before executing
an agglomeration based community detection algorithm can increase the
modularity of the overall network.

1 Introduction

A complex network has community structure if it divides naturally into groups
of vertices with denser connections within a community and sparser connections
across the communities. Community detection is an important analysis tool in
many applications including biological networks [20], collaboration patterns [1]
and epidemiology [4]. A popular metric for measuring the quality of communities
is based on computing the modularity of the network [14]. Generally, a high
modularity, indicates a better partitioning of the network into communities.

Maximizing modularity is an NP-hard problem [5]. Consequently there exist
many classes of heuristics to maximize modularity including agglomerative, di-
visive and spectral methods [17]. Recent publications [9] have also shown that
modularity maximization suffers from the problem of resolution limit, that is
communities smaller than a certain size cannot be detected, and in certain net-
works even the highest modularity value does not always reveal the optimal
division. Moreover, like all NP-hard combinatorial optimization problems, the
value of modularity and the division of the vertices into communities is depen-
dent on the order in which vertices are processed.

We believe that these instabilities may occur in cases where the entire net-
work is not modular enough to be classified into communities. Rather, some
? This work has been supported by the College of Information Science and Technology,

University of Nebraska at Omaha (UNO) and the FIRE grant from the UNO Office
of Research and Creative Activity.

2 Srinivasan and Bhowmick

portions of networks create naturally forming communities, while the remain-
ing vertices are allocated to communities based on parameters of the underlying
algorithms and permutations to the input. We define a stable community as a
group of vertices that are always allocated to the same community independent
of the perturbations to the input. The number of stable communities in a network
can provide an estimate of its inherent modularity. In this paper, we develop an
algorithm for identifying such stable communities. We show that by combin-
ing the vertices in stable communities as a preprocessing step to agglomerative
community detection we can increase the value of the modularity.

The rest of the paper is arranged as follows. In Section 2, we provide defi-
nitions for the network terminology used in this paper and a brief overview of
some of the related research in this area. In Section 3, present our algorithm to
identify stable communities in networks. In Section 4 we demonstrate using em-
pirical results, on a test suite of networks, how combining the identified stable
communities in the preprocessing step can improve the modularity value. We
conclude in Section 5 with discussions and plans for future research.

2 Terminology and Related Research

We define some terms associated with network analysis that are used in this
paper. A network (or graph) G = (V,E) is defined as a set of vertices V and
a set of edges E. An edge e ∈ E is associated with two vertices u, v which are
called its endpoints. A vertex u is a neighbor of v if they are joined by an edge.
The degree of a vertex u is the number of its neighbors. A path, of length l, in a
graph G is an alternating sequence of v0, e1, v1, e2, . . . , el, vl vertices and edges,
such that for j = 1, . . . , l; vj−1 and vj are the endpoints of edge ej , with no edges
or internal vertices repeated. A cycle is a path whose initial and final vertices
are identical.

The clustering coefficient of a vertex is computed as the ratio of the edges
between the neighbors of a vertex to the total possible connections between the
neighbors. A large clustering coefficient indicates presence of dense modules. The
betweenness centrality of a vertex (or edge) is the ratio of the number of shortest
paths traversing through it to the total number of shortest paths in the graph.
Detailed descriptions of these terms can be found in [15].

The metric of modularity of a network was proposed by Newman and Gir-
van [14] and is based on the concept that random networks do not form strong
communities. Given a partition of a network into M groups, let Cij represent
the fraction of total links starting at a node in group i and ending at a node
in group j. Let ai =

∑
j Cij correspond to the fraction of links connected to

subgroup i. Under random connections, the probability of links that begin at a
node in i, is ai, and the probability of links that end at a node in j, aj . Thus,
the expected number of within-community links, between nodes with group i,
is a2

i . The actual fraction of links within each group is Cii. So, a comparison of
the actual and expected values, summed over all groups of the partition gives us

Stable Communities For Modularity 3

the modularity, which is the deviation of the partition from random connections:
Q =

∑
(Cii − a2

i).
Maximizing modularity is a popular method for finding good communities in

networks. However finding the optimal modularity is an NP-hard problem [5].
There exist many heuristics for maximizing modularity including spectral par-
titioning, divisive and agglomerative methods [17]. Clauset et. al. [6], developed
a greedy agglomerative algorithm (to be referred as the CNM algorithm) which
initially considers every node in the network as an individual community, then
computes the increase in modularity for each pair of connected communities. The
pair of communities with the highest increase in modularity are then merged.
The process is iteratively repeated until there is no combination of vertices that
increase modularity. One of the disadvantages of the CNM method is that it
cannot backtrack to correct any earlier mistake made due to a greedy choice.
This is addressed in the Louvian method proposed in [3]. In this method at
each iteration vertices are moved from one community to another to increase
the overall modularity of the network.

Agglomerative methods, and modularity maximization in general, are re-
stricted by the resolution limit problem, that is they are unable to detect com-
munities smaller than a certain size. The Louvian method provides a hierarchy
of how the communities merged, and the lower levels can indicate the commu-
nities of smaller size. Other solutions to obtaining good communities include
approaches such as finding small seeded communities [19] or pruning some of
the outlier vertices to obtain better modularity.

The effect of perturbations of the input to the community detection results
is still a major issue. Karrer et. al. [12] conducted a study of robust or statis-
tically significant communities by perturbing the connectivity of the network
and then comparing change in community structures. It should be noted that
just comparing the value of the modularity does not give a clear estimate of
the difference in results since two different partition schemes on the same net-
work can give identical modularity values. A stronger comparison is based on
comparing the allocation of the vertices within the partitions. One method of
comparing across two partitions (obtained from different algorithms) is by using
the Rand index [18]. Given two different partitions of a network, the Rand in-
dex is computed as follows; Let a be the pair of vertices that are present in the
same community over both the partitions, let b be the pair of nodes that were in
different communities for both the partitions, then the Rand index is computed
as the ratio of the sum of a and b over all possible pairs of vertices. A high Rand
index (maximum value 1) indicates that the two partitions are equal and a low
Rand index indicates that they are very dissimilar.

3 Stable Communities in Networks

Our contribution is to characterize stable communities, develop an algorithm
to identify some of them and then combine the identified stable communities
as a preprocessing step for community detection. While this approach can be

4 Srinivasan and Bhowmick

applied to any agglomeration based method, in this paper we use CNM as the
base modularity maximization algorithm.

3.1 Effect of Vertex Ordering on Community Detection

In agglomeration based techniques, the order in which the vertices, and later the
communities, are processed, significantly affects the final partition–and thereby
the modularity value. As a first step to understanding the effect of vertex ordering
on modularity, we permuted a test-suite of networks as follows;

1. Random (RN): This is a random ordering of the vertices of the network.
2. High Degree (HD): The vertices are ordered according to the descending

order of degree.
3. Low Degree (LD): The vertices are ordered according to the ascending order

of degree.
4. Betweenness Centrality (BC): The betweenness centrality of the vertices are

computed. We form clusters containing one vertex with low betweenness
centrality and its neighbors. Vertices in the cluster are ordered consecutively.
Clusters with vertices of low betweenness centrality are given lower numbers,
indicating that they are to be processed earlier.

5. Clustering Coefficient (CC): The ordering is similar to BC. We form clusters
containing one vertex with high clustering coefficient and its neighbors. The
clusters of vertices with high clustering coefficient are ordered to be processed
earlier.

Our test-suite consists of nine unweighted and undirected networks obtained
from the clustering instances in the DIMACs website [7]. These are; (i) Jazz (net-
work of jazz musicians) [10], (ii)) PolBooks (network of books about USA poli-
tics) [16], (iii) Chesapeake (ecosystem from Chesapeake bay) [2],(iv) Power(topology
of power grid in the western states of USA) [21] (v) Celegans(N)(neural network
of C. elegans) [21], (vi)Celegans(M) (metabolic network of C. elegans) [8], (vii)
Dolphin (social network of dolphins) [13], (viii) Football (network of American
football games) [11] and (ix) Delaunay (triangulations at random points in an
unit square). The properties of the networks and their modularity values under
different orderings are given in Table 1.

The orderings based on degree generally favor the earlier processing of high
(HD) degree vertices. We see that HD produces higher (or equal) values of mod-
ularity as compared to LD. However, HD also has fewer components, indicating
the possibility of preferential attachment. The BC and CC orderings try to influ-
ence well connected clusters of vertices to be processed consecutively. The results
do not show any clear indication of which of these two orderings are better. When
comparing the four orderings (HD,LD,BC and CC), LD, often produces the low-
est modularity. There is no particular pattern to the behavior of RN, the random
ordering. It sometimes gives the highest modularity and sometimes the lowest.

We note that the modularity of the Jazz and PolBooks networks have re-
mained same across all the orderings, while the deviation of the modularity

Stable Communities For Modularity 5

Name Vertices Edges RN HD LD BC CC

Jazz 198 2742 .4387 (4) .4387 (4) .4387 (4) .4387 (4) .4387 (4)

PolBooks 105 441 .5019 (4) .5019 (4) .5019 (4) .5019 (4) .5019 (4)

Chesapeake 39 170 .2489 (3) .2570 (3) .2489 (3) .2342 (3) .2375 (3)

Power 4941 6594 .9157(63) .9112(66) .9140(65) .9157(63) 9084(62)

Celegans(N) 297 2148 .4024 (11) .4016 (8) .4040 (9) .4124 (8) .4019 (10)

Celegans(M) 453 2025 .3965 (11) .3999 (10) .4040 (10) .3999 (10) .3992 (10)

Dolphin 62 159 .4630 (5) .5028 (5) .4685 (5) .4766 (5) .5006 (5)

Football 115 613 .5682 (6) .5510 (6) .5497 (6) .5682 (6) .5400 (6)

Delaunay 1024 3056 .7405 (5) .7466 (6) .7168 (7) .7160 (7) .7238 (5)
Table 1. The maximum modularity value of a test-suite of networks under different
orderings. Jazz and Polbooks have the same modularity across all orderings. The high-
est obtained value of modularity of the other networks are highlighted in bold. The
number of communities from each ordering is given in parenthesis.

values of the Football, Dolphin and Delaunay networks are higher (shown in
Table 2). This leads us to conjecture that Jazz and PolBooks have more stable
groups of vertices, that are always combined together.

Since identical values of modularity do not necessarily mean identical parti-
tions, we compared the community membership obtained by the different order-
ings with that obtained by RN (the Rand Index). Based on the results in Table
2 we see that Jazz and PolBooks indeed retain perfect correspondence across
orderings, followed by Chesapeake, Celegans(N) and Power, then Dolphin, Foot-
ball and Celegans(M), while Delaunay has the worst correspondence of all. It
is also interesting to see that the relative values of the deviation in modularity
correspond with the Rand Indices. Networks with higher rand indices have lower
standard deviation of the modularity values. These results indicate that Jazz and
Polbooks are likely to have many stable communities, followed by Chesapeake,
Celegans(N) and Power. Dolphin, Football and Celegans(M) will likely have
fewer stable communities and Delaunay the fewest stable communities among
all networks.

While the empirical results are not conclusive evidence of stable communities,
the values seem reasonable based on the application domain. For example; Jazz
is a network of collaborations between East coast and West coast musicians, and
it is likely that musicians are more likely to work together if they are in nearby
geographic locations and PolBooks is a network of books on politics which can
be quite polarizing. The fact that the Delaunay network had almost no stable
structure also points to the accuracy of our hypothesis. Delaunay networks are
formed of triangles used for partitioning a surface. The triangles will have no
particular preference of attachment and almost every ordering can produce a
new community structure.

6 Srinivasan and Bhowmick

Name Rand In dex Deviation of
RN vs HD RN vs LD RN vs BC RN vs CC Modularity

Jazz 1 1 1 1 0

PolBooks 1 1 1 1 0

Chesapeake .967 1 .938 .968 .0047

Power .9740 .9751 .9712 .9685 .0032

Celegans (N) .9546 .933 .924 .899 .0045

Celegans (M) .7937 .8039 .7876 .7648 .0027

Dolphin .894 .959 .917 .909 .0184

Football .822 .92 1 .913 .0124

Delaunay .344 .3454 .3451 .3451 .014
Table 2. Comparison of the partitions obtained through different orderings. Columns
2-5 give the Rand Index of different partitions as compared with the random order-
ing(RN). Column 6 gives the deviation in modularity values over five different orderings.

3.2 Approaches to Identifying Stable Communities

We now consider the problem of identifying stable communities in a network. A
naive method would be to apply a variety of community detection algorithms on
different permutations of the network, and analyze this collection of partitions
to find stable groups of vertices. Apart from being computationally expensive,
the effectiveness of this method is also dependent on the number and quality of
the perturbations and the community detection methods.

We posit that stable communities are an inherent property of the network
and our goal is to develop algorithms that can identify them without executing
all the different community detection algorithms. In order to design algorithms
for identifying stable communities, we focus on the fact the a good partition
of communities will provide a high (if not maximum) modularity. Therefore,
we consider the following characteristic of stable communities—these are unique
groups of vertices such that the modularity of the network will decrease if any
vertex from a group is moved to another. Although this property seems to hold
for any network partition that gives the maximum modularity, the key idea is
that these groups have to be unique. That is once the groups of vertices are
formed, there will exist no other partition of the same set of vertices that will
provide the highest modularity. In most cases, only a subset of vertices of the
entire network will satisfy this property and our goal is to identify this subset
and the groups that they form.

First Approach. We define stable communities to have more connections
within the group (internal) than outside (external). Such communities are easy
to find. We order the vertices in descending order of their clustering coefficients.
For each vertex with a high clustering coefficient, we form a cluster of the vertex
and its neighbors. If the cluster satisfies the given property, then it is a stable
community.

However, this method is not sufficient to identify stable communities. This is
because even though cumulatively, within the community, the total number of

Stable Communities For Modularity 7

external connections may be less than the internal ones, some individual vertices
in the community might have more outer connections. In this case there is a
possibility that they might migrate to a different community from the original
one to provide higher modularity.

Second Approach. We modify our definition as follows; any subset in a
stable community should have more internal connections than external. However
this definition leaves only certain cliques, with extremely low external connec-
tions to be identified as stable. This approach is therefore very restrictive and
indeed, we did not find any such stable community in all our test networks.

Third Approach. In our third approach, we relax the definition of stable
communities as follows; any subset of vertices in a stable community should have
more internal connections than connections to any one external community. This
definition takes into account the relative ”pull” of the external communities. If
a subset from the group is connected strongly to only one external community,
then there is a possibility that that subset can migrate out of its original group.
However if the connections are divided across many external communities, then
it is likely that the subset will be more attracted to its original group.

One of the main challenges in designing an algorithm based on this definition
is that without any preliminary division of the network, we cannot know which
are the internal and the external connections. We therefore define a stable com-
munity Φk of strength k, such that the internal connections in Φk are greater
than the external connections to neighbors that are at a maximum distance
k from each other. The value of k represents the tightness or the maximum di-
ameter of the external communities. Our heuristic for identifying Φk is as follows;

Pseudocode for Identifying Stable Communities
Input: Network N , Maximum distance between communities k
Output: Set of stable communities of strength Φk

Order vertices in descending order of clustering coefficients
For all vertices vi in network N that are not in any stable community

Create a subset S of vi and its neighbors.
For each neighbor nj

Compute, xj , the number of connections of nj within S
Identify external neighbors of nj which are not in S
Identify, yj , the subset of external neighbors which are all within dis-

tance k of each other.
If xj > yj for all nj then mark S as a stable community

Merge stable communities if they have common vertices

If the average degree of a vertex is d, then a vertex vi will have on average
O(d) neighbors. Each neighbor nj will also have O(d) neighbors. The complexity
for identifying internal and external vertices is O(d), the complexity for comput-
ing xj is O(d) and the complexity for computing yj for all possible values of k
is O(d3). Therefore the total complexity for identifying individual quasi-chordal
vertices is O(d) ∗ (O(d) + O(d3)) ≈ O(d4). A vertex can be present in at most

8 Srinivasan and Bhowmick

d quasi-stable sets. If there are V vertices then the total number of elements to
be compared and merged will be at most O(dV).

Additionally, computing the connections for each subset in the community is
computationally prohibitive. If there are n vertices in the cluster, then we have
to check whether the conditions satisfy for 2n subsets. We resolve this issue by
only considering sets of a vertex and its neighbors at a time, and merging stable
communities if they have common vertices. In practice, the execution time can
be significantly reduced by creating subsets for vertices with only high cluster-
ing coefficients and not including neighbors with very high degrees. Subsets of
vertices that do not share links to any external community are not considered,
many clusters are disqualified after a few initial tests and generally the number
of vertices per cluster is quite small (average 4-6). Additionally, the values of
the shortest paths between external vertices can be reused for many neighbors
and setting k to small values, such as 2-4 is sufficient for identifying most of the
stable communities.

4 Modularity Maximization Using Stable Communities

We propose an initial preprocessing step, where stable communities are iden-
tified and merged, and then a community detection method is applied to this
preprocessed network. Our corrective modification is based on the structure of a
group of vertices, rather than one node at a time, and also takes into account the
propensity of the network to form communities. The number of stable commu-
nities obtained can be an indicator to the inherent modularity of the network.
If the number of stable communities is low or zero, maybe the network is not as
modular and community detection on it would only be of academic rather than
practical value.

We implemented this method on the test-suite of networks. The results are
given in Table 3. Though several stable communities were found and combined
for Jazz, the modularity did not change, indicating that the Jazz network is in-
deed very stable. Combining stable communities improved the modularity values
for Power, Dolphin, Celegans(N) and Celegans(M). Only one stable community
was obtained for Chesapeake and its modularity improved slightly (the modu-
larity for BC ordering decreased a little). Similarly only one stable community
was identified for Football, but including the preprocessing stage did not change
the modularity values. No stable community was found for Delaunay. This re-
sult points to the effectiveness of our method. As discussed earlier, Delaunay
being a network of triangles should not have any inherent community structure.
The number of communities in the networks were slightly smaller than those
obtained from the original algorithm. Generally lower number of communities
give higher modularity values. The most surprising results were from PolBooks.
We expected that like Jazz, PolBooks is very stable and the modularity values
would not be affected by the preprocessing. However, the preprocessing step
significantly improved the modularity of this network and the number of com-
munities also increased.

Stable Communities For Modularity 9

The values of the Rand index (as compared to the random ordering) are
given in Table 4. The values of Jazz and Football did not change, but for other
networks they were equal or degraded slightly. Rand index is measures not so
much the quality of the partitioning as the stability of the communities. The
standard deviation of the modularity values were also worse (higher) for all the
other networks, except Power for which it slightly improved. We conjecture that
this change in values was due to movement of other non stable communities, and
is an effect of the latent reordering caused by combining the stable communities
earlier. Nevertheless, we plan to investigate this phenomena further.

Table 5 gives the execution time of the original algorithm and and the new
one based on combining stable communities. Due to the extra time required for
identifying stable communities, the times of the modified method is generally
slightly higher. However, in most cases, this increase is only a small percentage
of the total execution time.

Name RN HD LD BC CC

Jazz (no change) .4387(4) .4387(4) .4387(4) .4387 (4) .4387(4)

PolBooks .5029 (5) .5207(5) .5019(4) .5229(5) .5019(5)

Chesapeake .2489(3) .2570(4) .2489(3) .2341(3) .2570(3)

Power .9125(63) .9131(65) .9140(65) .9159 (60) .9128 (63)

Celegans (N) .4236 (9) .4215 (10) .4128(11) .4242(11) .4266(8)

Celegans (M) .4227(9) .4227(9) .4150 (11) .4351 (10) .4131 (9)

Dolphin .4823(5) .5086(5) .5042(5) .4973(5) .5187(5)

Football (no change) .5682 (6) .5510 (6) .5497 (6) .5682 (6) .5400 (6)
Table 3. The maximum modularity value of test-suite of networks under different
orderings, obtained by combining stable communities in the preprocessing stage. All
the values (except for Cheaspeake-BC and Power-RN) are either equal to or higher than
the values obtained by the base method. The highest obtained values of modularity are
highlighted in bold. The numbers in the parenthesis give the number of communities.

Name Rand In dex Deviation of
RN vs HD RN vs LD RN vs BC RN vs CC Modularity

Jazz (no change) 1 1 1 1 0

PolBooks .9454 .843 .843 .897 .0108

Power .973 .974 .974 .973 .0094

Chesapeake .967 1 .938 .968 .0014

Celegans (N) . 855 .869 .84 .83 .0053

Celegans (M) .78 .76 . 80 .71 .0087

Dolphin .827 .858 .851 .868 .0136

Football (no change) .822 .92 1 .913 .0124
Table 4. Rand Index of different partitions, obtained by combining stable communities
in the preprocessing stage, as compared with the random ordering.

10 Srinivasan and Bhowmick

Name RN HD LD BC CC

Jazz 13.15(15.3) 13(18.06) 13.37(14.79) 13.33(14.86) 13.07(15.78)

PolBooks .693 (.864) .657 (.837) .726 (.835) .701(.838) .708(.855)

Power 109.49 (148.05) 108.78 (168.16) 114.72 (148.75) 105.10(152.32) 113.02 (142.20)

Chesapeake .052(.082) .052 (.095) .051(.075) .049(.087) .052 (.084)

Celegans (N) 71.07(73.44) 71.8(77.8) 72.3(75.52) 76.71(79.68) 73.11(77.38)

Celegans(M) 22.26 (31.90) 21.20 (30.99) 28. 36 (26.91) 24.26 (22.13) 21.50 (29.33)

Dolphin .066(.085) .063 (.091) .062 (.086) .067 (.084) .065 (.093)

Football .052(.91) .05(.90) .05(.94) .049(.91) .05 (1.00)

Table 5. The execution time in seconds of the original and the proposed method (given
in parenthesis).

5 Conclusions and Future Work

In this paper we proposed a preprocessing step for agglomerative community
detection, based on finding stable communities. Since stable communities are
groups of vertices that naturally form a community, this preprocessing step will
veer the agglomeration towards a more ”correct” solution. Additionally the num-
ber of stable communities indicates whether the network has any intrinsic com-
munity structure at all.

Our stable community detection heuristic can effectively find communities for
many of the benchmarked networks, and is also effective in the complementary
case, that it does not find stable communities where none are expected. However
the heuristic has still room for improvement, particularly in correctly identify-
ing external communities, and in improving the execution time. The current
implementation is cost efficient for only networks of 5000 vertices or lower. One
of our future research plans is to develop a better version of stable community
detection algorithm.

We also observe that the preprocessing step helps in increasing the modu-
larity in most cases. We had anticipated that the Rand index, which denotes
the similarity between different partitions to also improve, but that is not the
case, and we are investigating other techniques to amortize the effect of vertex
ordering on community detection while achieving high modularity.

References

1. Barabasi, A.L., Jeong, H., Ravasz, E., Neda, Z., Schuberts, A., Vicsek, T. Evolution
of the social network of scientific collaborations. Physica. A. 311, 590614 (2002)

2. D. Baird, R.E. Ulanowicz.The seasonal dynamics of the Chesapeake Bay ecosystem.
Ecol. Monogr. 59: 329-364.(1989).

3. V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre. Fast unfolding of
community hierarchies in large networks. J. Stat. Mech. 2008 (10):

Stable Communities For Modularity 11

4. Boguna, M., Pastor-Satorras, R., Vespignani: Epidemic spreading in complex net-
works with degree correlations. Statistical Mechanics of Complex Networks. Lecture
Notes in Physics, vol. 625, pp. 127147 (2003)

5. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D.
Wagner. On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering, 20(2):172188, 2008.

6. Clauset, A., Newman, M.E.J. and Moore, C. Finding community structure in very
large networks. Phys. Rev. E. 70(6), 66111 (2004)

7. Dimacs Testbed http://www.cc.gatech.edu/dimacs10/downloads.shtml
8. J. Duch and A. Arenas, Community Identification using Extremal Optimization.

Physical Review E, 72, 027104, (2005).
9. B. H. Good, Y.-A. de Montjoye and A. Clauset The performance of modularity

maximization in practical contexts. Phys.ical Review. E, 81, 046106 (2010).
10. P.Gleiser and L. Danon , Adv. Complex Syst. 6, 565 (2003).
11. M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002).
12. Karrer, B., Levina, E. and Newman, M.E.J. Robustness of community structure

in networks Physical Review E, Vol. 77, No. 4. (2008)
13. D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson,

Behavioral Ecology and Sociobiology 54, 396-405 (2003).
14. M.E.J. Newman, M. Girvan. Finding and evaluating community structure in net-

works.Phys. Rev. E 69(2), 026113 (2004)
15. M.E.J. Newman, Network. An Introduction. Oxford University Press, USA; 1 edi-

tion (May 20, 2010)
16. Political Books. http://www.orgnet.com/
17. M. A. Porter, J.-P. Onnela, and P. J. Mucha. Communities in networks. Notices

of the American Mathematical Society. 56, (2009).
18. W. Rand, Objective criteria for the evaluation of clustering methods. J. Am. Stat.

Assoc. 66 (336), 846850 (1971).
19. J. Riedy, D. A. Bader, K. Jiang, P. Pande, R. Sharma. Detecting

Communities from Given Seeds in Social Networks. Technical Report.
http://hdl.handle.net/1853/36980

20. Voevodski, K., Teng, S.H., Xia, Y.: Finding local communities in protein networks.
BMC Bioinformatics 10(10), 297 (2009)

21. D. J. Watts and S. H. Strogatz, Nature 393, 440-442 (1998).

